A Novel Method Incorporating Gene Ontology Information for Unsupervised Clustering and Feature Selection
Shireesh Srivastava,
Linxia Zhang,
Rong Jin and
Christina Chan
PLOS ONE, 2008, vol. 3, issue 12, 1-8
Abstract:
Background: Among the primary goals of microarray analysis is the identification of genes that could distinguish between different phenotypes (feature selection). Previous studies indicate that incorporating prior information of the genes' function could help identify physiologically relevant features. However, current methods that incorporate prior functional information do not provide a relative estimate of the effect of different genes on the biological processes of interest. Results: Here, we present a method that integrates gene ontology (GO) information and expression data using Bayesian regression mixture models to perform unsupervised clustering of the samples and identify physiologically relevant discriminating features. As a model application, the method was applied to identify the genes that play a role in the cytotoxic responses of human hepatoblastoma cell line (HepG2) to saturated fatty acid (SFA) and tumor necrosis factor (TNF)-α, as compared to the non-toxic response to the unsaturated FFAs (UFA) and TNF-α. Incorporation of prior knowledge led to a better discrimination of the toxic phenotypes from the others. The model identified roles of lysosomal ATPases and adenylate cyclase (AC9) in the toxicity of palmitate. To validate the role of AC in palmitate-treated cells, we measured the intracellular levels of cyclic AMP (cAMP). The cAMP levels were found to be significantly reduced by palmitate treatment and not by the other FFAs, in accordance with the model selection of AC9. Conclusions: A framework is presented that incorporates prior ontology information, which helped to (a) perform unsupervised clustering of the phenotypes, and (b) identify the genes relevant to each cluster of phenotypes. We demonstrate the proposed framework by applying it to identify physiologically-relevant feature genes that conferred differential toxicity to saturated vs. unsaturated FFAs. The framework can be applied to other problems to efficiently integrate ontology information and expression data in order to identify feature genes.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0003860 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 03860&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0003860
DOI: 10.1371/journal.pone.0003860
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().