EconPapers    
Economics at your fingertips  
 

Improved Disorder Prediction by Combination of Orthogonal Approaches

Avner Schlessinger, Marco Punta, Guy Yachdav, Laszlo Kajan and Burkhard Rost

PLOS ONE, 2009, vol. 4, issue 2, 1-10

Abstract: Disordered proteins are highly abundant in regulatory processes such as transcription and cell-signaling. Different methods have been developed to predict protein disorder often focusing on different types of disordered regions. Here, we present MD, a novel META-Disorder prediction method that molds various sources of information predominantly obtained from orthogonal prediction methods, to significantly improve in performance over its constituents. In sustained cross-validation, MD not only outperforms its origins, but it also compares favorably to other state-of-the-art prediction methods in a variety of tests that we applied. Availability: http://www.rostlab.org/services/md/

Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0004433 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 04433&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0004433

DOI: 10.1371/journal.pone.0004433

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0004433