EconPapers    
Economics at your fingertips  
 

Improved Focalization of Electrical Microstimulation Using Microelectrode Arrays: A Modeling Study

Sébastien Joucla and Blaise Yvert

PLOS ONE, 2009, vol. 4, issue 3, 1-13

Abstract: Extracellular electrical stimulation (EES) of the central nervous system (CNS) has been used empirically for decades, with both fundamental and clinical goals. Currently, microelectrode arrays (MEAs) offer new possibilities for CNS microstimulation. However, although focal CNS activation is of critical importance to achieve efficient stimulation strategies, the precise spatial extent of EES remains poorly understood. The aim of the present work is twofold. First, we validate a finite element model to compute accurately the electrical potential field generated throughout the extracellular medium by an EES delivered with MEAs. This model uses Robin boundary conditions that take into account the surface conductance of electrode/medium interfaces. Using this model, we determine how the potential field is influenced by the stimulation and ground electrode impedances, and by the electrical conductivity of the neural tissue. We confirm that current-controlled stimulations should be preferred to voltage-controlled stimulations in order to control the amplitude of the potential field. Second, we evaluate the focality of the potential field and threshold-distance curves for different electrode configurations. We propose a new configuration to improve the focality, using a ground surface surrounding all the electrodes of the array. We show that the lower the impedance of this surface, the more focal the stimulation. In conclusion, this study proposes new boundary conditions for the design of precise computational models of extracellular stimulation, and a new electrode configuration that can be easily incorporated into future MEA devices, either in vitro or in vivo, for a better spatial control of CNS microstimulation.

Date: 2009
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0004828 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 04828&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0004828

DOI: 10.1371/journal.pone.0004828

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0004828