Analysis of Group Randomized Trials with Multiple Binary Endpoints and Small Number of Groups
Ji-Hyun Lee,
Michael J Schell and
Richard Roetzheim
PLOS ONE, 2009, vol. 4, issue 10, 1-9
Abstract:
The group randomized trial (GRT) is a common study design to assess the effect of an intervention program aimed at health promotion or disease prevention. In GRTs, groups rather than individuals are randomized into intervention or control arms. Then, responses are measured on individuals within those groups. A number of analytical problems beset GRT designs. The major problem emerges from the likely positive intraclass correlation among observations of individuals within a group. This paper provides an overview of the analytical method for GRT data and applies this method to a randomized cancer prevention trial, where multiple binary primary endpoints were obtained. We develop an index of extra variability to investigate group-specific effects on response. The purpose of the index is to understand the influence of individual groups on evaluating the intervention effect, especially, when a GRT study involves a small number of groups. The multiple endpoints from the GRT design are analyzed using a generalized linear mixed model and the stepdown Bonferroni method of Holm.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0007265 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 07265&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0007265
DOI: 10.1371/journal.pone.0007265
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().