Empirical Bayes Analysis of Quantitative Proteomics Experiments
Adam A Margolin,
Shao-En Ong,
Monica Schenone,
Robert Gould,
Stuart L Schreiber,
Steven A Carr and
Todd R Golub
PLOS ONE, 2009, vol. 4, issue 10, 1-15
Abstract:
Background: Advances in mass spectrometry-based proteomics have enabled the incorporation of proteomic data into systems approaches to biology. However, development of analytical methods has lagged behind. Here we describe an empirical Bayes framework for quantitative proteomics data analysis. The method provides a statistical description of each experiment, including the number of proteins that differ in abundance between 2 samples, the experiment's statistical power to detect them, and the false-positive probability of each protein. Methodology/Principal Findings: We analyzed 2 types of mass spectrometric experiments. First, we showed that the method identified the protein targets of small-molecules in affinity purification experiments with high precision. Second, we re-analyzed a mass spectrometric data set designed to identify proteins regulated by microRNAs. Our results were supported by sequence analysis of the 3′ UTR regions of predicted target genes, and we found that the previously reported conclusion that a large fraction of the proteome is regulated by microRNAs was not supported by our statistical analysis of the data. Conclusions/Significance: Our results highlight the importance of rigorous statistical analysis of proteomic data, and the method described here provides a statistical framework to robustly and reliably interpret such data.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0007454 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 07454&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0007454
DOI: 10.1371/journal.pone.0007454
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().