EconPapers    
Economics at your fingertips  
 

Protein Networks Reveal Detection Bias and Species Consistency When Analysed by Information-Theoretic Methods

Luis P Fernandes, Alessia Annibale, Jens Kleinjung, Anthony C C Coolen and Franca Fraternali

PLOS ONE, 2010, vol. 5, issue 8, 1-14

Abstract: We apply our recently developed information-theoretic measures for the characterisation and comparison of protein–protein interaction networks. These measures are used to quantify topological network features via macroscopic statistical properties. Network differences are assessed based on these macroscopic properties as opposed to microscopic overlap, homology information or motif occurrences. We present the results of a large–scale analysis of protein–protein interaction networks. Precise null models are used in our analyses, allowing for reliable interpretation of the results. By quantifying the methodological biases of the experimental data, we can define an information threshold above which networks may be deemed to comprise consistent macroscopic topological properties, despite their small microscopic overlaps. Based on this rationale, data from yeast–two–hybrid methods are sufficiently consistent to allow for intra–species comparisons (between different experiments) and inter–species comparisons, while data from affinity–purification mass–spectrometry methods show large differences even within intra–species comparisons.

Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0012083 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 12083&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0012083

DOI: 10.1371/journal.pone.0012083

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone (plosone@plos.org).

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0012083