EconPapers    
Economics at your fingertips  
 

Hierarchical Clustering Using the Arithmetic-Harmonic Cut: Complexity and Experiments

Romeo Rizzi, Pritha Mahata, Luke Mathieson and Pablo Moscato

PLOS ONE, 2010, vol. 5, issue 12, 1-8

Abstract: Clustering, particularly hierarchical clustering, is an important method for understanding and analysing data across a wide variety of knowledge domains with notable utility in systems where the data can be classified in an evolutionary context. This paper introduces a new hierarchical clustering problem defined by a novel objective function we call the arithmetic-harmonic cut. We show that the problem of finding such a cut is -hard and -hard but is fixed-parameter tractable, which indicates that although the problem is unlikely to have a polynomial time algorithm (even for approximation), exact parameterized and local search based techniques may produce workable algorithms. To this end, we implement a memetic algorithm for the problem and demonstrate the effectiveness of the arithmetic-harmonic cut on a number of datasets including a cancer type dataset and a corona virus dataset. We show favorable performance compared to currently used hierarchical clustering techniques such as -Means, Graclus and Normalized-Cut. The arithmetic-harmonic cut metric overcoming difficulties other hierarchal methods have in representing both intercluster differences and intracluster similarities.

Date: 2010
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0014067 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 14067&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0014067

DOI: 10.1371/journal.pone.0014067

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0014067