Hypersensitivity to Thromboxane Receptor Mediated Cerebral Vasomotion and CBF Oscillations during Acute NO-Deficiency in Rats
Béla Horváth,
Gábor Lenzsér,
Balázs Benyó,
Tamás Németh,
Rita Benkő,
András Iring,
Péter Hermán,
Katalin Komjáti,
Zsombor Lacza,
Péter Sándor and
Zoltán Benyó
PLOS ONE, 2010, vol. 5, issue 12, 1-6
Abstract:
Background: Low frequency (4–12 cpm) spontaneous fluctuations of the cerebrovascular tone (vasomotion) and oscillations of the cerebral blood flow (CBF) have been reported in diseases associated with endothelial dysfunction. Since endothelium-derived nitric oxide (NO) suppresses constitutively the release and vascular effects of thromboxane A2 (TXA2), NO-deficiency is often associated with activation of thromboxane receptors (TP). In the present study we hypothesized that in the absence of NO, overactivation of the TP-receptor mediated cerebrovascular signaling pathway contributes to the development of vasomotion and CBF oscillations. Methodology/Principal Findings: Effects of pharmacological modulation of TP-receptor activation and its downstream signaling pathway have been investigated on CBF oscillations (measured by laser-Doppler flowmetry in anesthetized rats) and vasomotion (measured by isometric tension recording in isolated rat middle cerebral arteries, MCAs) both under physiological conditions and after acute inhibition of NO synthesis. Administration of the TP-receptor agonist U-46619 (1 µg/kg iv.) to control animals failed to induce any changes of the systemic or cerebral circulatory parameters. Inhibition of the NO synthesis by nitro-L-arginine methyl esther (L-NAME, 100 mg/kg iv.) resulted in increased mean arterial blood pressure and a decreased CBF accompanied by appearance of CBF-oscillations with a dominant frequency of 148±2 mHz. U-46619 significantly augmented the CBF-oscillations induced by L-NAME while inhibition of endogenous TXA2 synthesis by ozagrel (10 mg/kg iv.) attenuated it. In isolated MCAs U-46619 in a concentration of 100 nM, which induced weak and stable contraction under physiological conditions, evoked sustained vasomotion in the absence of NO, which effect could be completely reversed by inhibition of Rho-kinase by 10 µM Y-27632. Conclusion/Significance: These results suggest that hypersensitivity of the TP-receptor – Rho-kinase signaling pathway contributes to the development of low frequency cerebral vasomotion which may propagate to vasospasm in pathophysiological states associated with NO-deficiency.
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0014477 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 14477&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0014477
DOI: 10.1371/journal.pone.0014477
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().