Using Functional Annotation for the Empirical Determination of Bayes Factors for Genome-Wide Association Study Analysis
Jo Knight,
Michael R Barnes,
Gerome Breen and
Michael E Weale
PLOS ONE, 2011, vol. 6, issue 4, 1-8
Abstract:
A genome wide association study (GWAS) typically results in a few highly significant ‘hits’ and a much larger set of suggestive signals (‘near-hits’). The latter group are expected to be a mixture of true and false associations. One promising strategy to help separate these is to use functional annotations for prioritisation of variants for follow-up. A key task is to determine which annotations might prove most valuable. We address this question by examining the functional annotations of previously published GWAS hits. We explore three annotation categories: non-synonymous SNPs (nsSNPs), promoter SNPs and cis expression quantitative trait loci (eQTLs) in open chromatin regions. We demonstrate that GWAS hit SNPs are enriched for these three functional categories, and that it would be appropriate to provide a higher weighting for such SNPs when performing Bayesian association analyses. For GWAS studies, our analyses suggest the use of a Bayes Factor of about 4 for cis eQTL SNPs within regions of open chromatin, 3 for nsSNPs and 2 for promoter SNPs.
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0014808 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 14808&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0014808
DOI: 10.1371/journal.pone.0014808
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().