Estimating Parameters of Speciation Models Based on Refined Summaries of the Joint Site-Frequency Spectrum
Aurélien Tellier,
Peter Pfaffelhuber,
Bernhard Haubold,
Lisha Naduvilezhath,
Laura E Rose,
Thomas Städler,
Wolfgang Stephan and
Dirk Metzler
PLOS ONE, 2011, vol. 6, issue 5, 1-13
Abstract:
Understanding the processes and conditions under which populations diverge to give rise to distinct species is a central question in evolutionary biology. Since recently diverged populations have high levels of shared polymorphisms, it is challenging to distinguish between recent divergence with no (or very low) inter-population gene flow and older splitting events with subsequent gene flow. Recently published methods to infer speciation parameters under the isolation-migration framework are based on summarizing polymorphism data at multiple loci in two species using the joint site-frequency spectrum (JSFS). We have developed two improvements of these methods based on a more extensive use of the JSFS classes of polymorphisms for species with high intra-locus recombination rates. First, using a likelihood based method, we demonstrate that taking into account low-frequency polymorphisms shared between species significantly improves the joint estimation of the divergence time and gene flow between species. Second, we introduce a local linear regression algorithm that considerably reduces the computational time and allows for the estimation of unequal rates of gene flow between species. We also investigate which summary statistics from the JSFS allow the greatest estimation accuracy for divergence time and migration rates for low (around 10) and high (around 100) numbers of loci. Focusing on cases with low numbers of loci and high intra-locus recombination rates we show that our methods for the estimation of divergence time and migration rates are more precise than existing approaches.
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0018155 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 18155&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0018155
DOI: 10.1371/journal.pone.0018155
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().