EconPapers    
Economics at your fingertips  
 

From Isotropic to Anisotropic Side Chain Representations: Comparison of Three Models for Residue Contact Estimation

Weitao Sun and Jing He

PLOS ONE, 2011, vol. 6, issue 4, 1-14

Abstract: The criterion to determine residue contact is a fundamental problem in deriving knowledge-based mean-force potential energy calculations for protein structures. A frequently used criterion is to require the side chain center-to-center distance or the -to- atom distance to be within a pre-determined cutoff distance. However, the spatially anisotropic nature of the side chain determines that it is challenging to identify the contact pairs. This study compares three side chain contact models: the Atom Distance criteria (ADC) model, the Isotropic Sphere Side chain (ISS) model and the Anisotropic Ellipsoid Side chain (AES) model using 424 high resolution protein structures in the Protein Data Bank. The results indicate that the ADC model is the most accurate and ISS is the worst. The AES model eliminates about 95% of the incorrectly counted contact-pairs in the ISS model. Algorithm analysis shows that AES model is the most computational intensive while ADC model has moderate computational cost. We derived a dataset of the mis-estimated contact pairs by AES model. The most misjudged pairs are Arg-Glu, Arg-Asp and Arg-Tyr. Such a dataset can be useful for developing the improved AES model by incorporating the pair-specific information for the cutoff distance.

Date: 2011
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0019238 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 19238&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0019238

DOI: 10.1371/journal.pone.0019238

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0019238