EconPapers    
Economics at your fingertips  
 

Predicting Housekeeping Genes Based on Fourier Analysis

Bo Dong, Peng Zhang, Xiaowei Chen, Li Liu, Yunfei Wang, Shunmin He and Runsheng Chen

PLOS ONE, 2011, vol. 6, issue 6, 1-11

Abstract: Housekeeping genes (HKGs) generally have fundamental functions in basic biochemical processes in organisms, and usually have relatively steady expression levels across various tissues. They play an important role in the normalization of microarray technology. Using Fourier analysis we transformed gene expression time-series from a Hela cell cycle gene expression dataset into Fourier spectra, and designed an effective computational method for discriminating between HKGs and non-HKGs using the support vector machine (SVM) supervised learning algorithm which can extract significant features of the spectra, providing a basis for identifying specific gene expression patterns. Using our method we identified 510 human HKGs, and then validated them by comparison with two independent sets of tissue expression profiles. Results showed that our predicted HKG set is more reliable than three previously identified sets of HKGs.

Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0021012 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 21012&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0021012

DOI: 10.1371/journal.pone.0021012

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0021012