A New Model Using Routinely Available Clinical Parameters to Predict Significant Liver Fibrosis in Chronic Hepatitis B
Wai-Kay Seto,
Chun-Fan Lee,
Ching-Lung Lai,
Philip P C Ip,
Daniel Yee-Tak Fong,
James Fung,
Danny Ka-Ho Wong and
Man-Fung Yuen
PLOS ONE, 2011, vol. 6, issue 8, 1-7
Abstract:
Objective: We developed a predictive model for significant fibrosis in chronic hepatitis B (CHB) based on routinely available clinical parameters. Methods: 237 treatment-naïve CHB patients [58.4% hepatitis B e antigen (HBeAg)-positive] who had undergone liver biopsy were randomly divided into two cohorts: training group (n = 108) and validation group (n = 129). Liver histology was assessed for fibrosis. All common demographics, viral serology, viral load and liver biochemistry were analyzed. Results: Based on 12 available clinical parameters (age, sex, HBeAg status, HBV DNA, platelet, albumin, bilirubin, ALT, AST, ALP, GGT and AFP), a model to predict significant liver fibrosis (Ishak fibrosis score ≥3) was derived using the five best parameters (age, ALP, AST, AFP and platelet). Using the formula log(index+1) = 0.025+0.0031(age)+0.1483 log(ALP)+0.004 log(AST)+0.0908 log(AFP+1)−0.028 log(platelet), the PAPAS (Platelet/Age/Phosphatase/AFP/AST) index predicts significant fibrosis with an area under the receiving operating characteristics (AUROC) curve of 0.776 [0.797 for patients with ALT
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0023077 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 23077&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0023077
DOI: 10.1371/journal.pone.0023077
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().