EconPapers    
Economics at your fingertips  
 

Dickkopf1 Regulates Fate Decision and Drives Breast Cancer Stem Cells to Differentiation: An Experimentally Supported Mathematical Model

Zvia Agur, Oleg U Kirnasovsky, Genadiy Vasserman, Lilach Tencer-Hershkowicz, Yuri Kogan, Hannah Harrison, Rebecca Lamb and Robert B Clarke

PLOS ONE, 2011, vol. 6, issue 9, 1-10

Abstract: Background: Modulation of cellular signaling pathways can change the replication/differentiation balance in cancer stem cells (CSCs), thus affecting tumor growth and recurrence. Analysis of a simple, experimentally verified, mathematical model suggests that this balance is maintained by quorum sensing (QS). Methodology/Principal Findings: To explore the mechanism by which putative QS cellular signals in mammary stem cells (SCs) may regulate SC fate decisions, we developed a multi-scale mathematical model, integrating extra-cellular and intra-cellular signal transduction within the mammary tissue dynamics. Preliminary model analysis of the single cell dynamics indicated that Dickkopf1 (Dkk1), a protein known to negatively regulate the Wnt pathway, can serve as anti-proliferation and pro-maturation signal to the cell. Simulations of the multi-scale tissue model suggested that Dkk1 may be a QS factor, regulating SC density on the level of the whole tissue: relatively low levels of exogenously applied Dkk1 have little effect on SC numbers, whereas high levels drive SCs into differentiation. To verify these model predictions, we treated the MCF-7 cell line and primary breast cancer (BC) cells from 3 patient samples with different concentrations and dosing regimens of Dkk1, and evaluated subsequent formation of mammospheres (MS) and the mammary SC marker CD44+CD24lo. As predicted by the model, low concentrations of Dkk1 had no effect on primary BC cells, or even increased MS formation among MCF-7 cells, whereas high Dkk1 concentrations decreased MS formation among both primary BC cells and MCF-7 cells. Conclusions/Significance: Our study suggests that Dkk1 treatment may be more robust than other methods for eliminating CSCs, as it challenges a general cellular homeostasis mechanism, namely, fate decision by QS. The study also suggests that low dose Dkk1 administration may be counterproductive; we showed experimentally that in some cases it can stimulate CSC proliferation, although this needs validating in vivo.

Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0024225 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 24225&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0024225

DOI: 10.1371/journal.pone.0024225

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0024225