Inferring Network Connectivity by Delayed Feedback Control
Dongchuan Yu and
Ulrich Parlitz
PLOS ONE, 2011, vol. 6, issue 9, 1-12
Abstract:
We suggest a control based approach to topology estimation of networks with elements. This method first drives the network to steady states by a delayed feedback control; then performs structural perturbations for shifting the steady states times; and finally infers the connection topology from the steady states' shifts by matrix inverse algorithm () or -norm convex optimization strategy applicable to estimate the topology of sparse networks from perturbations. We discuss as well some aspects important for applications, such as the topology reconstruction quality and error sources, advantages and disadvantages of the suggested method, and the influence of (control) perturbations, inhomegenity, sparsity, coupling functions, and measurement noise. Some examples of networks with Chua's oscillators are presented to illustrate the reliability of the suggested technique.
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0024333 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 24333&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0024333
DOI: 10.1371/journal.pone.0024333
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().