IgE Recognition Patterns of Profilin, PR-10, and Tropomyosin Panallergens Tested in 3,113 Allergic Patients by Allergen Microarray-Based Technology
Enrico Scala,
Claudia Alessandri,
Paola Palazzo,
Debora Pomponi,
Marina Liso,
Maria Livia Bernardi,
Rosetta Ferrara,
Danila Zennaro,
Mario Santoro,
Chiara Rasi and
Adriano Mari
PLOS ONE, 2011, vol. 6, issue 9, 1-8
Abstract:
Background: IgE recognition of panallergens having highly conserved sequence regions, structure, and function and shared by inhalant and food allergen sources is often observed. Methods: We evaluated the IgE recognition profile of profilins (Bet v 2, Cyn d 12, Hel a 2, Hev b 8, Mer a 1, Ole e 2, Par j 3, Phl p 12, Pho d 2), PR-10 proteins (Aln g 1, Api g 1, Bet v 1.0101, Bet v 1.0401, Cor a 1, Dau c 1 and Mal d 1.0108) and tropomyosins (Ani s 3, Der p 10, Hel as 1, Pen i 1, Pen m 1, Per a 7) using the Immuno-Solid phase Allergen Chip (ISAC) microarray system. The three panallergen groups were well represented among the allergenic molecules immobilized on the ISAC. Moreover, they are distributed in several taxonomical allergenic sources, either close or distant, and have a route of exposure being either inhalation or ingestion. Results: 3,113 individuals (49.9% female) were selected on the basis of their reactivity to profilins, PR-10 or tropomyosins. 1,521 (48.8%) patients were reactive to profilins (77.6% Mer a 1 IgE+), 1,420 (45.6%) to PR-10 (92.5% Bet v 1 IgE+) and 632 (20.3%) to tropomyosins (68% Der p 10 IgE+). A significant direct relationship between different representative molecules within each group of panallergens was found. 2,688 patients (86.4%) recognized only one out of the three distinct groups of molecules as confirmed also by hierarchical clustering analysis. Conclusions: Unless exposed to most of the allergens in the same or related allergenic sources, a preferential IgE response to distinct panallergens has been recorded. Allergen microarray IgE testing increases our knowledge of the IgE immune response and related epidemiological features within and between homologous molecules better describing the patients' immunological phenotypes.
Date: 2011
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0024912 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 24912&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0024912
DOI: 10.1371/journal.pone.0024912
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().