Graph Constrained Discriminant Analysis: A New Method for the Integration of a Graph into a Classification Process
Vincent Guillemot,
Arthur Tenenhaus,
Laurent Le Brusquet and
Vincent Frouin
PLOS ONE, 2011, vol. 6, issue 10, 1-8
Abstract:
Integrating gene regulatory networks (GRNs) into the classification process of DNA microarrays is an important issue in bioinformatics, both because this information has a true biological interest and because it helps in the interpretation of the final classifier. We present a method called graph-constrained discriminant analysis (gCDA), which aims to integrate the information contained in one or several GRNs into a classification procedure. We show that when the integrated graph includes erroneous information, gCDA's performance is only slightly worse, thus showing robustness to misspecifications in the given GRNs. The gCDA framework also allows the classification process to take into account as many a priori graphs as there are classes in the dataset. The gCDA procedure was applied to simulated data and to three publicly available microarray datasets. gCDA shows very interesting performance when compared to state-of-the-art classification methods. The software package gcda, along with the real datasets that were used in this study, are available online: http://biodev.cea.fr/gcda/.
Date: 2011
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0026146 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 26146&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0026146
DOI: 10.1371/journal.pone.0026146
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().