Body Temperature Patterns and Rhythmicity in Free-Ranging Subterranean Damaraland Mole-Rats, Fukomys damarensis
Sonja Streicher,
Justin G Boyles,
Maria K Oosthuizen and
Nigel C Bennett
PLOS ONE, 2011, vol. 6, issue 10, 1-8
Abstract:
Body temperature (Tb) is an important physiological component that affects endotherms from the cellular to whole organism level, but measurements of Tb in the field have been noticeably skewed towards heterothermic species and seasonal comparisons are largely lacking. Thus, we investigated patterns of Tb patterns in a homeothermic, free-ranging small mammal, the Damaraland mole-rat (Fukomys damarensis) during both the summer and winter. Variation in Tb was significantly greater during winter than summer, and greater among males than females. Interestingly, body mass had only a small effect on variation in Tb and there was no consistent pattern relating ambient temperature to variation in Tb. Generally speaking, it appears that variation in Tb patterns varies between seasons in much the same way as in heterothermic species, just to a lesser degree. Both cosinor analysis and Fast Fourier Transform analysis revealed substantial individual variation in Tb rhythms, even within a single colony. Some individuals had no Tb rhythms, while others appeared to exhibit multiple rhythms. These data corroborate previous laboratory work showing multiplicity of rhythms in mole-rats and suggest the variation seen in the laboratory is a true indicator of the variation seen in the wild.
Date: 2011
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0026346 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 26346&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0026346
DOI: 10.1371/journal.pone.0026346
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().