EconPapers    
Economics at your fingertips  
 

Finding and Testing Network Communities by Lumped Markov Chains

Carlo Piccardi

PLOS ONE, 2011, vol. 6, issue 11, 1-13

Abstract: Identifying communities (or clusters), namely groups of nodes with comparatively strong internal connectivity, is a fundamental task for deeply understanding the structure and function of a network. Yet, there is a lack of formal criteria for defining communities and for testing their significance. We propose a sharp definition that is based on a quality threshold. By means of a lumped Markov chain model of a random walker, a quality measure called “persistence probability” is associated to a cluster, which is then defined as an “-community” if such a probability is not smaller than . Consistently, a partition composed of -communities is an “-partition.” These definitions turn out to be very effective for finding and testing communities. If a set of candidate partitions is available, setting the desired -level allows one to immediately select the -partition with the finest decomposition. Simultaneously, the persistence probabilities quantify the quality of each single community. Given its ability in individually assessing each single cluster, this approach can also disclose single well-defined communities even in networks that overall do not possess a definite clusterized structure.

Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0027028 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 27028&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0027028

DOI: 10.1371/journal.pone.0027028

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0027028