EconPapers    
Economics at your fingertips  
 

Underestimated Effect Sizes in GWAS: Fundamental Limitations of Single SNP Analysis for Dichotomous Phenotypes

Sven Stringer, Naomi R Wray, René S Kahn and Eske M Derks

PLOS ONE, 2011, vol. 6, issue 11, 1-7

Abstract: Complex diseases are often highly heritable. However, for many complex traits only a small proportion of the heritability can be explained by observed genetic variants in traditional genome-wide association (GWA) studies. Moreover, for some of those traits few significant SNPs have been identified. Single SNP association methods test for association at a single SNP, ignoring the effect of other SNPs. We show using a simple multi-locus odds model of complex disease that moderate to large effect sizes of causal variants may be estimated as relatively small effect sizes in single SNP association testing. This underestimation effect is most severe for diseases influenced by numerous risk variants. We relate the underestimation effect to the concept of non-collapsibility found in the statistics literature. As described, continuous phenotypes generated with linear genetic models are not affected by this underestimation effect. Since many GWA studies apply single SNP analysis to dichotomous phenotypes, previously reported results potentially underestimate true effect sizes, thereby impeding identification of true effect SNPs. Therefore, when a multi-locus model of disease risk is assumed, a multi SNP analysis may be more appropriate.

Date: 2011
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0027964 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 27964&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0027964

DOI: 10.1371/journal.pone.0027964

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0027964