EconPapers    
Economics at your fingertips  
 

Two-Way Minimization: A Novel Treatment Allocation Method for Small Trials

Lan-Hsin Chen and Wen-Chung Lee

PLOS ONE, 2011, vol. 6, issue 12, 1-8

Abstract: Randomization is a hallmark of clinical trials. If a trial entails very few subjects and has many prognostic factors (or many factor levels) to be balanced, minimization is a more efficient method to achieve balance than a simple randomization. We propose a novel minimization method, the ‘two-way minimization’. The method separately calculates the ‘imbalance in the total numbers of subjects’ and the ‘imbalance in the distributions of prognostic factors’. And then to allocate a subject, it chooses—by probability—to minimize either one of these two aspects of imbalances. As such, it is a method that is both treatment-adaptive and covariate-adaptive. We perform Monte-Carlo simulations to examine its statistical properties. The two-way minimization (with proper regression adjustment of the force-balanced prognostic factors) has the correct type I error rates. It also produces point estimates that are unbiased and variance estimates that are accurate. When there are important prognostic factors to be balanced in the study, the method achieves the highest power and the smallest variance among randomization methods that are resistant to selection bias. The allocation can be done in real time and the subsequent data analysis is straightforward. The two-way minimization is recommended to balance prognostic factors in small trials.

Date: 2011
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0028604 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 28604&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0028604

DOI: 10.1371/journal.pone.0028604

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0028604