EconPapers    
Economics at your fingertips  
 

Investigating Meta-Approaches for Reconstructing Gene Networks in a Mammalian Cellular Context

Azree Nazri and Pietro Lio

PLOS ONE, 2012, vol. 7, issue 1, 1-10

Abstract: The output of state-of-the-art reverse-engineering methods for biological networks is often based on the fitting of a mathematical model to the data. Typically, different datasets do not give single consistent network predictions but rather an ensemble of inconsistent networks inferred under the same reverse-engineering method that are only consistent with the specific experimentally measured data. Here, we focus on an alternative approach for combining the information contained within such an ensemble of inconsistent gene networks called meta-analysis, to make more accurate predictions and to estimate the reliability of these predictions. We review two existing meta-analysis approaches; the Fisher transformation combined coefficient test (FTCCT) and Fisher's inverse combined probability test (FICPT); and compare their performance with five well-known methods, ARACNe, Context Likelihood or Relatedness network (CLR), Maximum Relevance Minimum Redundancy (MRNET), Relevance Network (RN) and Bayesian Network (BN). We conducted in-depth numerical ensemble simulations and demonstrated for biological expression data that the meta-analysis approaches consistently outperformed the best gene regulatory network inference (GRNI) methods in the literature. Furthermore, the meta-analysis approaches have a low computational complexity. We conclude that the meta-analysis approaches are a powerful tool for integrating different datasets to give more accurate and reliable predictions for biological networks.

Date: 2012
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0028713 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 28713&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0028713

DOI: 10.1371/journal.pone.0028713

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0028713