Disease-Free Survival after Hepatic Resection in Hepatocellular Carcinoma Patients: A Prediction Approach Using Artificial Neural Network
Wen-Hsien Ho,
King-Teh Lee,
Hong-Yaw Chen,
Te-Wei Ho and
Herng-Chia Chiu
PLOS ONE, 2012, vol. 7, issue 1, 1-9
Abstract:
Background: A database for hepatocellular carcinoma (HCC) patients who had received hepatic resection was used to develop prediction models for 1-, 3- and 5-year disease-free survival based on a set of clinical parameters for this patient group. Methods: The three prediction models included an artificial neural network (ANN) model, a logistic regression (LR) model, and a decision tree (DT) model. Data for 427, 354 and 297 HCC patients with histories of 1-, 3- and 5-year disease-free survival after hepatic resection, respectively, were extracted from the HCC patient database. From each of the three groups, 80% of the cases (342, 283 and 238 cases of 1-, 3- and 5-year disease-free survival, respectively) were selected to provide training data for the prediction models. The remaining 20% of cases in each group (85, 71 and 59 cases in the three respective groups) were assigned to validation groups for performance comparisons of the three models. Area under receiver operating characteristics curve (AUROC) was used as the performance index for evaluating the three models. Conclusions: The ANN model outperformed the LR and DT models in terms of prediction accuracy. This study demonstrated the feasibility of using ANNs in medical decision support systems for predicting disease-free survival based on clinical databases in HCC patients who have received hepatic resection.
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0029179 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 29179&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0029179
DOI: 10.1371/journal.pone.0029179
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().