Regulatory Design Governing Progression of Population Growth Phases in Bacteria
Agustino Martínez-Antonio,
Jason G Lomnitz,
Santiago Sandoval,
Maximino Aldana and
Michael A Savageau
PLOS ONE, 2012, vol. 7, issue 2, 1-12
Abstract:
It has long been noted that batch cultures inoculated with resting bacteria exhibit a progression of growth phases traditionally labeled lag, exponential, pre-stationary and stationary. However, a detailed molecular description of the mechanisms controlling the transitions between these phases is lacking. A core circuit, formed by a subset of regulatory interactions involving five global transcription factors (FIS, HNS, IHF, RpoS and GadX), has been identified by correlating information from the well- established transcriptional regulatory network of Escherichia coli and genome-wide expression data from cultures in these different growth phases. We propose a functional role for this circuit in controlling progression through these phases. Two alternative hypotheses for controlling the transition between the growth phases are first, a continuous graded adjustment to changing environmental conditions, and second, a discontinuous hysteretic switch at critical thresholds between growth phases. We formulate a simple mathematical model of the core circuit, consisting of differential equations based on the power-law formalism, and show by mathematical and computer-assisted analysis that there are critical conditions among the parameters of the model that can lead to hysteretic switch behavior, which – if validated experimentally – would suggest that the transitions between different growth phases might be analogous to cellular differentiation. Based on these provocative results, we propose experiments to test the alternative hypotheses.
Date: 2012
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0030654 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 30654&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0030654
DOI: 10.1371/journal.pone.0030654
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().