EconPapers    
Economics at your fingertips  
 

iNR-PhysChem: A Sequence-Based Predictor for Identifying Nuclear Receptors and Their Subfamilies via Physical-Chemical Property Matrix

Xuan Xiao, Pu Wang and Kuo-Chen Chou

PLOS ONE, 2012, vol. 7, issue 2, 1-9

Abstract: Nuclear receptors (NRs) form a family of ligand-activated transcription factors that regulate a wide variety of biological processes, such as homeostasis, reproduction, development, and metabolism. Human genome contains 48 genes encoding NRs. These receptors have become one of the most important targets for therapeutic drug development. According to their different action mechanisms or functions, NRs have been classified into seven subfamilies. With the avalanche of protein sequences generated in the postgenomic age, we are facing the following challenging problems. Given an uncharacterized protein sequence, how can we identify whether it is a nuclear receptor? If it is, what subfamily it belongs to? To address these problems, we developed a predictor called iNR-PhysChem in which the protein samples were expressed by a novel mode of pseudo amino acid composition (PseAAC) whose components were derived from a physical-chemical matrix via a series of auto-covariance and cross-covariance transformations. It was observed that the overall success rate achieved by iNR-PhysChem was over 98% in identifying NRs or non-NRs, and over 92% in identifying NRs among the following seven subfamilies: NR1thyroid hormone like, NR2HNF4-like, NR3estrogen like, NR4nerve growth factor IB-like, NR5fushi tarazu-F1 like, NR6germ cell nuclear factor like, and NR0knirps like. These rates were derived by the jackknife tests on a stringent benchmark dataset in which none of protein sequences included has pairwise sequence identity to any other in a same subset. As a user-friendly web-server, iNR-PhysChem is freely accessible to the public at either http://www.jci-bioinfo.cn/iNR-PhysChem or http://icpr.jci.edu.cn/bioinfo/iNR-PhysChem. Also a step-by-step guide is provided on how to use the web-server to get the desired results without the need to follow the complicated mathematics involved in developing the predictor. It is anticipated that iNR-PhysChem may become a useful high throughput tool for both basic research and drug design.

Date: 2012
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0030869 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 30869&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0030869

DOI: 10.1371/journal.pone.0030869

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0030869