EconPapers    
Economics at your fingertips  
 

Detecting Regulatory Mechanisms in Endocrine Time Series Measurements

Daniel J Vis, Johan A Westerhuis, Huub C J Hoefsloot, Ferdinand Roelfsema, Margriet M W B Hendriks and Age K Smilde

PLOS ONE, 2012, vol. 7, issue 3, 1-10

Abstract: The regulatory mechanisms underlying pulsatile secretion are complex, especially as it is partly controlled by other hormones and the combined action of multiple agents. Regulatory relations between hormones are not directly observable but may be deduced from time series measurements of plasma hormone concentrations. Variation in plasma hormone levels are the resultant of secretion and clearance from the circulation. A strategy is proposed to extract inhibition, activation, thresholds and circadian synchronicity from concentration data, using particular association methods. Time delayed associations between hormone concentrations and/or extracted secretion pulse profiles reveal the information on regulatory mechanisms. The above mentioned regulatory mechanisms are illustrated with simulated data. Additionally, data from a lean cohort of healthy control subjects is used to illustrate activation (ACTH and cortisol) and circadian synchronicity (ACTH and TSH) in real data. The simulation and the real data both consist of 145 equidistant samples per individual, matching a 24-hr time span with 10 minute intervals. The results of the simulation and the real data are in concordance.

Date: 2012
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0032985 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 32985&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0032985

DOI: 10.1371/journal.pone.0032985

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone (plosone@plos.org).

 
Page updated 2025-03-22
Handle: RePEc:plo:pone00:0032985