Significant Communities in Large Sparse Networks
Atieh Mirshahvalad,
Johan Lindholm,
Mattias Derlén and
Martin Rosvall
PLOS ONE, 2012, vol. 7, issue 3, 1-7
Abstract:
Researchers use community-detection algorithms to reveal large-scale organization in biological and social networks, but community detection is useful only if the communities are significant and not a result of noisy data. To assess the statistical significance of the network communities, or the robustness of the detected structure, one approach is to perturb the network structure by removing links and measure how much the communities change. However, perturbing sparse networks is challenging because they are inherently sensitive; they shatter easily if links are removed. Here we propose a simple method to perturb sparse networks and assess the significance of their communities. We generate resampled networks by adding extra links based on local information, then we aggregate the information from multiple resampled networks to find a coarse-grained description of significant clusters. In addition to testing our method on benchmark networks, we use our method on the sparse network of the European Court of Justice (ECJ) case law, to detect significant and insignificant areas of law. We use our significance analysis to draw a map of the ECJ case law network that reveals the relations between the areas of law.
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0033721 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 33721&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0033721
DOI: 10.1371/journal.pone.0033721
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().