Statistical Inference of Selection and Divergence from a Time-Dependent Poisson Random Field Model
Amei Amei and
Stanley Sawyer
PLOS ONE, 2012, vol. 7, issue 4, 1-7
Abstract:
We apply a recently developed time-dependent Poisson random field model to aligned DNA sequences from two related biological species to estimate selection coefficients and divergence time. We use Markov chain Monte Carlo methods to estimate species divergence time and selection coefficients for each locus. The model assumes that the selective effects of non-synonymous mutations are normally distributed across genetic loci but constant within loci, and synonymous mutations are selectively neutral. In contrast with previous models, we do not assume that the individual species are at population equilibrium after divergence. Using a data set of 91 genes in two Drosophila species, D. melanogaster and D. simulans, we estimate the species divergence time (or 1.68 million years, assuming the haploid effective population size years) and a mean selection coefficient per generation . Although the average selection coefficient is positive, the magnitude of the selection is quite small. Results from numerical simulations are also presented as an accuracy check for the time-dependent model.
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0034413 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 34413&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0034413
DOI: 10.1371/journal.pone.0034413
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().