EconPapers    
Economics at your fingertips  
 

Integrative Subtype Discovery in Glioblastoma Using iCluster

Ronglai Shen, Qianxing Mo, Nikolaus Schultz, Venkatraman E Seshan, Adam B Olshen, Jason Huse, Marc Ladanyi and Chris Sander

PLOS ONE, 2012, vol. 7, issue 4, 1-9

Abstract: Large-scale cancer genome projects, such as the Cancer Genome Atlas (TCGA) project, are comprehensive molecular characterization efforts to accelerate our understanding of cancer biology and the discovery of new therapeutic targets. The accumulating wealth of multidimensional data provides a new paradigm for important research problems including cancer subtype discovery. The current standard approach relies on separate clustering analyses followed by manual integration. Results can be highly data type dependent, restricting the ability to discover new insights from multidimensional data. In this study, we present an integrative subtype analysis of the TCGA glioblastoma (GBM) data set. Our analysis revealed new insights through integrated subtype characterization. We found three distinct integrated tumor subtypes. Subtype 1 lacks the classical GBM events of chr 7 gain and chr 10 loss. This subclass is enriched for the G-CIMP phenotype and shows hypermethylation of genes involved in brain development and neuronal differentiation. The tumors in this subclass display a Proneural expression profile. Subtype 2 is characterized by a near complete association with EGFR amplification, overrepresentation of promoter methylation of homeobox and G-protein signaling genes, and a Classical expression profile. Subtype 3 is characterized by NF1 and PTEN alterations and exhibits a Mesenchymal-like expression profile. The data analysis workflow we propose provides a unified and computationally scalable framework to harness the full potential of large-scale integrated cancer genomic data for integrative subtype discovery.

Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0035236 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 35236&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0035236

DOI: 10.1371/journal.pone.0035236

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0035236