EconPapers    
Economics at your fingertips  
 

The Structure of Mutations and the Evolution of Cooperation

Julián García and Arne Traulsen

PLOS ONE, 2012, vol. 7, issue 4, 1-9

Abstract: Evolutionary game dynamics in finite populations assumes that all mutations are equally likely, i.e., if there are strategies a single mutation can result in any strategy with probability . However, in biological systems it seems natural that not all mutations can arise from a given state. Certain mutations may be far away, or even be unreachable given the current composition of an evolving population. These distances between strategies (or genotypes) define a topology of mutations that so far has been neglected in evolutionary game theory. In this paper we re-evaluate classic results in the evolution of cooperation departing from the assumption of uniform mutations. We examine two cases: the evolution of reciprocal strategies in a repeated prisoner's dilemma, and the evolution of altruistic punishment in a public goods game. In both cases, alternative but reasonable mutation kernels shift known results in the direction of less cooperation. We therefore show that assuming uniform mutations has a substantial impact on the fate of an evolving population. Our results call for a reassessment of the “model-less” approach to mutations in evolutionary dynamics.

Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0035287 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 35287&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0035287

DOI: 10.1371/journal.pone.0035287

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0035287