EconPapers    
Economics at your fingertips  
 

A Computational Analysis Framework for Molecular Cell Dynamics: Case-Study of Exocytosis

Wenhai Chen, Wen Zhou, Tian Xia and Xun Gu

PLOS ONE, 2012, vol. 7, issue 7, 1-10

Abstract: One difficulty in conducting biologically meaningful dynamic analysis at the systems biology level is that in vivo system regulation is complex. Meanwhile, many kinetic rates are unknown, making global system analysis intractable in practice. In this article, we demonstrate a computational pipeline to help solve this problem, using the exocytotic process as an example. Exocytosis is an essential process in all eukaryotic cells that allows communication in cells through vesicles that contain a wide range of intracellular molecules. During this process a set of proteins called SNAREs acts as an engine in this vesicle-membrane fusion, by forming four-helical bundle complex between (membrane) target-specific and vesicle-specific SNAREs. As expected, the regulatory network for exocytosis is very complex. Based on the current understanding of the protein-protein interaction network related to exocytosis, we mathematically formulated the whole system, by the ordinary differential equations (ODE). We then applied a mathematical approach (called inverse problem) to estimating the kinetic parameters in the fundamental subsystem (without regulation) from limited in vitro experimental data, which fit well with the reports by the conventional assay. These estimates allowed us to conduct an efficient stability analysis under a specified parameter space for the exocytotic process with or without regulation. Finally, we discuss the potential of this approach to explain experimental observations and to make testable hypotheses for further experimentation.

Date: 2012
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0038699 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 38699&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0038699

DOI: 10.1371/journal.pone.0038699

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-22
Handle: RePEc:plo:pone00:0038699