Characteristic Gene Selection via Weighting Principal Components by Singular Values
Jin-Xing Liu,
Yong Xu,
Chun-Hou Zheng,
Yi Wang and
Jing-Yu Yang
PLOS ONE, 2012, vol. 7, issue 7, 1-10
Abstract:
Conventional gene selection methods based on principal component analysis (PCA) use only the first principal component (PC) of PCA or sparse PCA to select characteristic genes. These methods indeed assume that the first PC plays a dominant role in gene selection. However, in a number of cases this assumption is not satisfied, so the conventional PCA-based methods usually provide poor selection results. In order to improve the performance of the PCA-based gene selection method, we put forward the gene selection method via weighting PCs by singular values (WPCS). Because different PCs have different importance, the singular values are exploited as the weights to represent the influence on gene selection of different PCs. The ROC curves and AUC statistics on artificial data show that our method outperforms the state-of-the-art methods. Moreover, experimental results on real gene expression data sets show that our method can extract more characteristic genes in response to abiotic stresses than conventional gene selection methods.
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0038873 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 38873&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0038873
DOI: 10.1371/journal.pone.0038873
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().