Object Affordances Tune Observers' Prior Expectations about Tool-Use Behaviors
Pierre O Jacquet,
Valérian Chambon,
Anna M Borghi and
Alessia Tessari
PLOS ONE, 2012, vol. 7, issue 6, 1-11
Abstract:
Learning about the function and use of tools through observation requires the ability to exploit one's own knowledge derived from past experience. It also depends on the detection of low-level local cues that are rooted in the tool's perceptual properties. Best known as ‘affordances’, these cues generate biomechanical priors that constrain the number of possible motor acts that are likely to be performed on tools. The contribution of these biomechanical priors to the learning of tool-use behaviors is well supported. However, it is not yet clear if, and how, affordances interact with higher-order expectations that are generated from past experience – i.e. probabilistic exposure – to enable observational learning of tool use. To address this question we designed an action observation task in which participants were required to infer, under various conditions of visual uncertainty, the intentions of a demonstrator performing tool-use behaviors. Both the probability of observing the demonstrator achieving a particular tool function and the biomechanical optimality of the observed movement were varied. We demonstrate that biomechanical priors modulate the extent to which participants' predictions are influenced by probabilistically-induced prior expectations. Biomechanical and probabilistic priors have a cumulative effect when they ‘converge’ (in the case of a probabilistic bias assigned to optimal behaviors), or a mutually inhibitory effect when they actively ‘diverge’ (in the case of probabilistic bias assigned to suboptimal behaviors).
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0039629 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 39629&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0039629
DOI: 10.1371/journal.pone.0039629
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().