Teamwork: Improved eQTL Mapping Using Combinations of Machine Learning Methods
Marit Ackermann,
Mathieu Clément-Ziza,
Jacob J Michaelson and
Andreas Beyer
PLOS ONE, 2012, vol. 7, issue 7, 1-8
Abstract:
Expression quantitative trait loci (eQTL) mapping is a widely used technique to uncover regulatory relationships between genes. A range of methodologies have been developed to map links between expression traits and genotypes. The DREAM (Dialogue on Reverse Engineering Assessments and Methods) initiative is a community project to objectively assess the relative performance of different computational approaches for solving specific systems biology problems. The goal of one of the DREAM5 challenges was to reverse-engineer genetic interaction networks from synthetic genetic variation and gene expression data, which simulates the problem of eQTL mapping. In this framework, we proposed an approach whose originality resides in the use of a combination of existing machine learning algorithms (committee). Although it was not the best performer, this method was by far the most precise on average. After the competition, we continued in this direction by evaluating other committees using the DREAM5 data and developed a method that relies on Random Forests and LASSO. It achieved a much higher average precision than the DREAM best performer at the cost of slightly lower average sensitivity.
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0040916 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 40916&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0040916
DOI: 10.1371/journal.pone.0040916
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().