An Epidemiological Framework for Modelling Fungicide Dynamics and Control
Matthew D Castle and
Christopher A Gilligan
PLOS ONE, 2012, vol. 7, issue 8, 1-10
Abstract:
Defining appropriate policies for controlling the spread of fungal disease in agricultural landscapes requires appropriate theoretical models. Most existing models for the fungicidal control of plant diseases do not explicitly include the dynamics of the fungicide itself, nor do they consider the impact of infection occurring during the host growth phase. We introduce a modelling framework for fungicide application that allows us to consider how “explicit” modelling of fungicide dynamics affects the invasion and persistence of plant pathogens. Specifically, we show that “explicit” models exhibit bistability zones for values of the basic reproductive number () less than one within which the invasion and persistence threshold depends on the initial infection levels. This is in contrast to classical models where invasion and persistence thresholds are solely dependent on . In addition if initial infection occurs during the growth phase then an additional “invasion zone” can exist for even smaller values of . Within this region the system will experience an epidemic that is not able to persist. We further show that ideal fungicides with high levels of effectiveness, low rates of application and low rates of decay lead to the existence of these bistability zones. The results are robust to the inclusion of demographic stochasticity.
Date: 2012
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0040941 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 40941&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0040941
DOI: 10.1371/journal.pone.0040941
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().