Cumulative Cultural Evolution and Demography
Krist Vaesen
PLOS ONE, 2012, vol. 7, issue 7, 1-9
Abstract:
The idea that demographic change may spur or slow down technological change has become widely accepted among evolutionary archaeologists and anthropologists. Two models have been particularly influential in promoting this idea: a mathematical model by Joseph Henrich, developed to explain the Tasmanian loss of culture during the Holocene; and an agent-based adaptation thereof, devised by Powell et al. to explain the emergence of modern behaviour in the Late Pleistocene. However, the models in question make rather strong assumptions about the distribution of skills among social learners and about the selectivity of social learning strategies. Here I examine the behaviour of these models under more conservative and, on empirical and theoretical grounds, equally reasonable assumptions. I show that, some qualifications notwithstanding, Henrich’s model largely withstands my robustness tests. The model of Powell et al., in contrast, does not–a finding that warrants a fair amount of skepticism towards Powell et al.’s explanation of the Upper Paleolithic transition. More generally, my evaluation of the accounts of Henrich and of Powell et al. helpfully clarify which inferences their popular models do and not support.
Date: 2012
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0040989 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 40989&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0040989
DOI: 10.1371/journal.pone.0040989
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().