EconPapers    
Economics at your fingertips  
 

Development of a Novel In Silico Docking Simulation Model for the Fine HIV-1 Cytotoxic T Lymphocyte Epitope Mapping

Masahiko Mori, Kei Matsuki, Tomoyuki Maekawa, Mari Tanaka, Busarawan Sriwanthana, Masaru Yokoyama and Koya Ariyoshi

PLOS ONE, 2012, vol. 7, issue 7, 1-6

Abstract: Introduction: Class I HLA's polymorphism has hampered CTL epitope mapping with laborious experiments. Objectives are 1) to evaluate the novel in silico model in predicting previously reported epitopes in comparison with existing program, and 2) to apply the model to predict optimal epitopes with HLA using experimental results. Materials and Methods: We have developed a novel in silico epitope prediction method, based on HLA crystal structure and a peptide docking simulation model, calculating the peptide-HLA binding affinity at four amino acid residues in each terminal. It was applied to predict 52 HIV best–defined CTL epitopes from 15-mer overlapping peptides, and its predictive ability was compared with the HLA binding motif-based program of HLArestrictor. It was then used to predict HIV-1 Gag optimal epitopes from previous ELISpot results. Results: 43/52 (82.7%) epitopes were detected by the novel model, whereas 37 (71.2%) by HLArestrictor. We also found a significant reduction in epitope detection rates for longer epitopes in HLArestrictor (p = 0.027), but not in the novel model. Improved epitope prediction was also found by introducing both models, especially in specificity (p

Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0041703 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 41703&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0041703

DOI: 10.1371/journal.pone.0041703

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0041703