Implications of Pyrosequencing Error Correction for Biological Data Interpretation
Matthew G Bakker,
Zheng J Tu,
James M Bradeen and
Linda L Kinkel
PLOS ONE, 2012, vol. 7, issue 8, 1-9
Abstract:
There has been a rapid proliferation of approaches for processing and manipulating second generation DNA sequence data. However, users are often left with uncertainties about how the choice of processing methods may impact biological interpretation of data. In this report, we probe differences in output between two different processing pipelines: a de-noising approach using the AmpliconNoise algorithm for error correction, and a standard approach using quality filtering and preclustering to reduce error. There was a large overlap in reads culled by each method, although AmpliconNoise removed a greater net number of reads. Most OTUs produced by one method had a clearly corresponding partner in the other. Although each method resulted in OTUs consisting entirely of reads that were culled by the other method, there were many more such OTUs formed in the standard pipeline. Total OTU richness was reduced by AmpliconNoise processing, but per-sample OTU richness, diversity and evenness were increased. Increases in per-sample richness and diversity may be a result of AmpliconNoise processing producing a more even OTU rank-abundance distribution. Because communities were randomly subsampled to equalize sample size across communities, and because rare sequence variants are less likely to be selected during subsampling, fewer OTUs were lost from individual communities when subsampling AmpliconNoise-processed data. In contrast to taxon-based diversity estimates, phylogenetic diversity was reduced even on a per-sample basis by de-noising, and samples switched widely in diversity rankings. This work illustrates the significant impacts of processing pipelines on the biological interpretations that can be made from pyrosequencing surveys. This study provides important cautions for analyses of contemporary data, for requisite data archiving (processed vs. non-processed data), and for drawing comparisons among studies performed using distinct data processing pipelines.
Date: 2012
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0044357 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 44357&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0044357
DOI: 10.1371/journal.pone.0044357
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().