EconPapers    
Economics at your fingertips  
 

Controlling Effects of Irradiance and Heterotrophy on Carbon Translocation in the Temperate Coral Cladocora caespitosa

Pascale Tremblay, Christine Ferrier-Pagès, Jean François Maguer, Cécile Rottier, Louis Legendre and Renaud Grover

PLOS ONE, 2012, vol. 7, issue 9, 1-13

Abstract: Temperate symbiotic corals, such as the Mediterranean species Cladocora caespitosa, live in seasonally changing environments, where irradiance can be ten times higher in summer than winter. These corals shift from autotrophy in summer to heterotrophy in winter in response to light limitation of the symbiont’s photosynthesis. In this study, we determined the autotrophic carbon budget under different conditions of irradiance (20 and 120 µmol photons m−2 s−1) and feeding (fed three times a week with Artemia salina nauplii, and unfed). Corals were incubated in H13CO3−-enriched seawater, and the fate of 13C was followed in the symbionts and the host tissue. The total amount of carbon fixed by photosynthesis and translocated was significantly higher at high than low irradiance (ca. 13 versus 2.5–4.5 µg cm−2 h−1), because the rates of photosynthesis and carbon fixation were also higher. However, the percent of carbon translocation was similar under the two irradiances, and reached more than 70% of the total fixed carbon. Host feeding induced a decrease in the percentage of carbon translocated under low irradiance (from 70 to 53%), and also a decrease in the rates of carbon translocation per symbiont cell under both irradiances. The fate of autotrophic and heterotrophic carbon differed according to irradiance. At low irradiance, autotrophic carbon was mostly respired by the host and the symbionts, and heterotrophic feeding led to an increase in host biomass. Under high irradiance, autotrophic carbon was both respired and released as particulate and dissolved organic carbon, and heterotrophic feeding led to an increase in host biomass and symbiont concentration. Overall, the maintenance of high symbiont concentration and high percentage of carbon translocation under low irradiance allow this coral species to optimize its autotrophic carbon acquisition, when irradiance conditions are not favourable to photosynthesis.

Date: 2012
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0044672 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 44672&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0044672

DOI: 10.1371/journal.pone.0044672

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0044672