Transmission Mode Predicts Specificity and Interaction Patterns in Coral-Symbiodinium Networks
Nicholas S Fabina,
Hollie M Putnam,
Erik C Franklin,
Michael Stat and
Ruth D Gates
PLOS ONE, 2012, vol. 7, issue 9, 1-9
Abstract:
Most reef-building corals in the order Scleractinia depend on endosymbiotic algae in the genus Symbiodinium for energy and survival. Significant levels of taxonomic diversity in both partners result in numerous possible combinations of coral-Symbiodinium associations with unique functional characteristics. We created and analyzed the first coral-Symbiodinium networks utilizing a global dataset of interaction records from coral reefs in the tropical Indo-Pacific and Atlantic Oceans for 1991 to 2010. Our meta-analysis reveals that the majority of coral species and Symbiodinium types are specialists, but failed to detect any one-to-one obligate relationships. Symbiont specificity is correlated with a host’s transmission mode, with horizontally transmitting corals being more likely to interact with generalist symbionts. Globally, Symbiodinium types tend to interact with only vertically or horizontally transmitting corals, and only a few generalist types are found with both. Our results demonstrate a strong correlation between symbiont specificity, symbiont transmission mode, and community partitioning. The structure and dynamics of these network interactions underlie the fundamental biological partnership that determines the condition and resilience of coral reef ecosystems.
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0044970 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 44970&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0044970
DOI: 10.1371/journal.pone.0044970
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().