EconPapers    
Economics at your fingertips  
 

GlycReSoft: A Software Package for Automated Recognition of Glycans from LC/MS Data

Evan Maxwell, Yan Tan, Yuxiang Tan, Han Hu, Gary Benson, Konstantin Aizikov, Shannon Conley, Gregory O Staples, Gordon W Slysz, Richard D Smith and Joseph Zaia

PLOS ONE, 2012, vol. 7, issue 9, 1-11

Abstract: Glycosylation modifies the physicochemical properties and protein binding functions of glycoconjugates. These modifications are biosynthesized in the endoplasmic reticulum and Golgi apparatus by a series of enzymatic transformations that are under complex control. As a result, mature glycans on a given site are heterogeneous mixtures of glycoforms. This gives rise to a spectrum of adhesive properties that strongly influences interactions with binding partners and resultant biological effects. In order to understand the roles glycosylation plays in normal and disease processes, efficient structural analysis tools are necessary. In the field of glycomics, liquid chromatography/mass spectrometry (LC/MS) is used to profile the glycans present in a given sample. This technology enables comparison of glycan compositions and abundances among different biological samples, i.e. normal versus disease, normal versus mutant, etc. Manual analysis of the glycan profiling LC/MS data is extremely time-consuming and efficient software tools are needed to eliminate this bottleneck. In this work, we have developed a tool to computationally model LC/MS data to enable efficient profiling of glycans. Using LC/MS data deconvoluted by Decon2LS/DeconTools, we built a list of unique neutral masses corresponding to candidate glycan compositions summarized over their various charge states, adducts and range of elution times. Our work aims to provide confident identification of true compounds in complex data sets that are not amenable to manual interpretation. This capability is an essential part of glycomics work flows. We demonstrate this tool, GlycReSoft, using an LC/MS dataset on tissue derived heparan sulfate oligosaccharides. The software, code and a test data set are publically archived under an open source license.

Date: 2012
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0045474 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 45474&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0045474

DOI: 10.1371/journal.pone.0045474

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone (plosone@plos.org).

 
Page updated 2025-03-22
Handle: RePEc:plo:pone00:0045474