Crowding Effects in Vehicular Traffic
Jay Samuel L Combinido and
May T Lim
PLOS ONE, 2012, vol. 7, issue 11, 1-8
Abstract:
While the impact of crowding on the diffusive transport of molecules within a cell is widely studied in biology, it has thus far been neglected in traffic systems where bulk behavior is the main concern. Here, we study the effects of crowding due to car density and driving fluctuations on the transport of vehicles. Using a microscopic model for traffic, we found that crowding can push car movement from a superballistic down to a subdiffusive state. The transition is also associated with a change in the shape of the probability distribution of positions from a negatively-skewed normal to an exponential distribution. Moreover, crowding broadens the distribution of cars’ trap times and cluster sizes. At steady state, the subdiffusive state persists only when there is a large variability in car speeds. We further relate our work to prior findings from random walk models of transport in cellular systems.
Date: 2012
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0048151 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 48151&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0048151
DOI: 10.1371/journal.pone.0048151
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().