Hierarchic Stochastic Modelling Applied to Intracellular Ca2+ Signals
Gregor Moenke,
Martin Falcke and
Keven Thurley
PLOS ONE, 2012, vol. 7, issue 12, 1-12
Abstract:
Important biological processes like cell signalling and gene expression have noisy components and are very complex at the same time. Mathematical analysis of such systems has often been limited to the study of isolated subsystems, or approximations are used that are difficult to justify. Here we extend a recently published method (Thurley and Falcke, PNAS 2011) which is formulated in observable system configurations instead of molecular transitions. This reduces the number of system states by several orders of magnitude and avoids fitting of kinetic parameters. The method is applied to signalling. is a ubiquitous second messenger transmitting information by stochastic sequences of concentration spikes, which arise by coupling of subcellular release events (puffs). We derive analytical expressions for a mechanistic model, based on recent data from live cell imaging, and calculate spike statistics in dependence on cellular parameters like stimulus strength or number of channels. The new approach substantiates a generic model, which is a very convenient way to simulate spike sequences with correct spiking statistics.
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0051178 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 51178&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0051178
DOI: 10.1371/journal.pone.0051178
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().