Analysis of Genome-Wide Association Studies with Multiple Outcomes Using Penalization
Jin Liu,
Jian Huang and
Shuangge Ma
PLOS ONE, 2012, vol. 7, issue 12, 1-12
Abstract:
Genome-wide association studies have been extensively conducted, searching for markers for biologically meaningful outcomes and phenotypes. Penalization methods have been adopted in the analysis of the joint effects of a large number of SNPs (single nucleotide polymorphisms) and marker identification. This study is partly motivated by the analysis of heterogeneous stock mice dataset, in which multiple correlated phenotypes and a large number of SNPs are available. Existing penalization methods designed to analyze a single response variable cannot accommodate the correlation among multiple response variables. With multiple response variables sharing the same set of markers, joint modeling is first employed to accommodate the correlation. The group Lasso approach is adopted to select markers associated with all the outcome variables. An efficient computational algorithm is developed. Simulation study and analysis of the heterogeneous stock mice dataset show that the proposed method can outperform existing penalization methods.
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0051198 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 51198&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0051198
DOI: 10.1371/journal.pone.0051198
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().