Electrostatically Induced Recruitment of Membrane Peptides into Clusters Requires Ligand Binding at Both Interfaces
Yuri N Antonenko,
Andreas Horner and
Peter Pohl
PLOS ONE, 2012, vol. 7, issue 12, 1-8
Abstract:
Protein recruitment to specific membrane locations may be governed or facilitated by electrostatic attraction, which originates from a multivalent ligand. Here we explored the energetics of a model system in which this simple electrostatic recruitment mechanism failed. That is, basic poly-L-lysine binding to one leaflet of a planar lipid bilayer did not recruit the triply-charged peptide (O-Pyromellitylgramicidin). Clustering was only observed in cases where PLL was bound to both channel ends. Clustering was indicated (i) by the decreased diffusional PLL mobility DPLL and (ii) by an increased lifetime τPLL of the clustered channels. In contrast, if PLL was bound to only one leaflet, neither DPLL nor τP changed. Simple calculations suggest that electrostatic repulsion of the unbound ends prevented neighboring OPg dimers from approaching each other. We believe that a similar mechanism may also operate in cell signaling and that it may e.g. contribute to the controversial results obtained for the ligand driven dimerization of G protein-coupled receptors.
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0052839 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 52839&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0052839
DOI: 10.1371/journal.pone.0052839
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().