Non-Equilibrium Casimir Force between Vibrating Plates
Andreas Hanke
PLOS ONE, 2013, vol. 8, issue 1, 1-8
Abstract:
We study the fluctuation-induced, time-dependent force between two plates confining a correlated fluid which is driven out of equilibrium mechanically by harmonic vibrations of one of the plates. For a purely relaxational dynamics of the fluid we calculate the fluctuation-induced force generated by the vibrating plate on the plate at rest. The time-dependence of this force is characterized by a positive lag time with respect to the driving. We obtain two distinctive contributions to the force, one generated by diffusion of stress in the fluid and another related to resonant dissipation in the cavity. The relation to the dynamic Casimir effect of the electromagnetic field and possible experiments to measure the time-dependent Casimir force are discussed.
Date: 2013
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0053228 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 53228&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0053228
DOI: 10.1371/journal.pone.0053228
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().