Feasibility of an Ingestible Sensor-Based System for Monitoring Adherence to Tuberculosis Therapy
Robert Belknap,
Steve Weis,
Andrew Brookens,
Kit Yee Au-Yeung,
Greg Moon,
Lorenzo DiCarlo and
Randall Reves
PLOS ONE, 2013, vol. 8, issue 1, 1-5
Abstract:
Poor adherence to tuberculosis (TB) treatment hinders the individual’s recovery and threatens public health. Currently, directly observed therapy (DOT) is the standard of care; however, high sustaining costs limit its availability, creating a need for more practical adherence confirmation methods. Techniques such as video monitoring and devices to time-register the opening of pill bottles are unable to confirm actual medication ingestions. A novel approach developed by Proteus Digital Health, Inc. consists of an ingestible sensor and an on-body wearable sensor; together, they electronically confirm unique ingestions and record the date/time of the ingestion. A feasibility study using an early prototype was conducted in active TB patients to determine the system’s accuracy and safety in confirming co-ingestion of TB medications with sensors. Thirty patients completed 10 DOT visits and 1,080 co-ingestion events; the system showed 95.0% (95% CI 93.5–96.2%) positive detection accuracy, defined as the number of detected sensors divided by the number of transmission capable sensors administered. The specificity was 99.7% [95% CI 99.2–99.9%] based on three false signals recorded by receivers. The system’s identification accuracy, defined as the number of correctly identified ingestible sensors divided by the number of sensors detected, was 100%. Of 11 adverse events, four were deemed related or possibly related to the device; three mild skin rashes and one complaint of nausea. The system’s positive detection accuracy was not affected by the subjects’ Body Mass Index (p = 0.7309). Study results suggest the system is capable of correctly identifying ingestible sensors with high accuracy, poses a low risk to users, and may have high patient acceptance. The system has the potential to confirm medication specific treatment compliance on a dose-by-dose basis. When coupled with mobile technology, the system could allow wirelessly observed therapy (WOT) for monitoring TB treatment as a replacement for DOT.
Date: 2013
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0053373 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 53373&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0053373
DOI: 10.1371/journal.pone.0053373
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().