Prediction of Auditory and Visual P300 Brain-Computer Interface Aptitude
Sebastian Halder,
Eva Maria Hammer,
Sonja Claudia Kleih,
Martin Bogdan,
Wolfgang Rosenstiel,
Niels Birbaumer and
Andrea Kübler
PLOS ONE, 2013, vol. 8, issue 2, 1-11
Abstract:
Objective: Brain-computer interfaces (BCIs) provide a non-muscular communication channel for patients with late-stage motoneuron disease (e.g., amyotrophic lateral sclerosis (ALS)) or otherwise motor impaired people and are also used for motor rehabilitation in chronic stroke. Differences in the ability to use a BCI vary from person to person and from session to session. A reliable predictor of aptitude would allow for the selection of suitable BCI paradigms. For this reason, we investigated whether P300 BCI aptitude could be predicted from a short experiment with a standard auditory oddball. Methods: Forty healthy participants performed an electroencephalography (EEG) based visual and auditory P300-BCI spelling task in a single session. In addition, prior to each session an auditory oddball was presented. Features extracted from the auditory oddball were analyzed with respect to predictive power for BCI aptitude. Results: Correlation between auditory oddball response and P300 BCI accuracy revealed a strong relationship between accuracy and N2 amplitude and the amplitude of a late ERP component between 400 and 600 ms. Interestingly, the P3 amplitude of the auditory oddball response was not correlated with accuracy. Conclusions: Event-related potentials recorded during a standard auditory oddball session moderately predict aptitude in an audiory and highly in a visual P300 BCI. The predictor will allow for faster paradigm selection. Significance: Our method will reduce strain on patients because unsuccessful training may be avoided, provided the results can be generalized to the patient population.
Date: 2013
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0053513 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 53513&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0053513
DOI: 10.1371/journal.pone.0053513
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().