Ion Concentration-Dependent Ion Conduction Mechanism of a Voltage-Sensitive Potassium Channel
Kota Kasahara,
Matsuyuki Shirota and
Kengo Kinoshita
PLOS ONE, 2013, vol. 8, issue 2, 1-8
Abstract:
Voltage-sensitive potassium ion channels are essential for life, but the molecular basis of their ion conduction is not well understood. In particular, the impact of ion concentration on ion conduction has not been fully studied. We performed several micro-second molecular dynamics simulations of the pore domain of the Kv1.2 potassium channel in KCl solution at four different ion concentrations, and scrutinized each of the conduction events, based on graphical representations of the simulation trajectories. As a result, we observed that the conduction mechanism switched with different ion concentrations: at high ion concentrations, potassium conduction occurred by Hodgkin and Keynes' knock-on mechanism, where the association of an incoming ion with the channel is tightly coupled with the dissociation of an outgoing ion, in a one-step manner. On the other hand, at low ion concentrations, ions mainly permeated by a two-step association/dissociation mechanism, in which the association and dissociation of ions were not coupled, and occurred in two distinct steps. We also found that this switch was triggered by the facilitated association of an ion from the intracellular side within the channel pore and by the delayed dissociation of the outermost ion, as the ion concentration increased.
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0056342 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 56342&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0056342
DOI: 10.1371/journal.pone.0056342
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().