Molecular Dynamics Reveal Binding Mode of Glutathionylspermidine by Trypanothione Synthetase
Oliver Koch,
Daniel Cappel,
Monika Nocker,
Timo Jäger,
Leopold Flohé,
Christoph A Sotriffer and
Paul M Selzer
PLOS ONE, 2013, vol. 8, issue 2, 1-10
Abstract:
The trypanothione synthetase (TryS) catalyses the two-step biosynthesis of trypanothione from spermidine and glutathione and is an attractive new drug target for the development of trypanocidal and antileishmanial drugs, especially since the structural information of TryS from Leishmania major has become available. Unfortunately, the TryS structure was solved without any of the substrates and lacks loop regions that are mechanistically important. This contribution describes docking and molecular dynamics simulations that led to further insights into trypanothione biosynthesis and, in particular, explains the binding modes of substrates for the second catalytic step. The structural model essentially confirm previously proposed binding sites for glutathione, ATP and two Mg2+ ions, which appear identical for both catalytic steps. The analysis of an unsolved loop region near the proposed spermidine binding site revealed a new pocket that was demonstrated to bind glutathionylspermidine in an inverted orientation. For the second step of trypanothione synthesis glutathionylspermidine is bound in a way that preferentially allows N1-glutathionylation of N8-glutathionylspermidine, classifying N8-glutathionylspermidine as the favoured substrate. By inhibitor docking, the binding site for N8-glutathionylspermidine was characterised as druggable.
Date: 2013
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0056788 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 56788&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0056788
DOI: 10.1371/journal.pone.0056788
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().